

# Mayo's Post-data Severity Evaluation

Statistik Kolloquium

André Meichtry March 5, 2024

### Data and statistical Test

```
mu0 <- 0 #H0
sigma <- 2 #known SD
n <- 30 #sample size
alpha <- 0.025 #siglevel
crit <- mu0 + qnorm(1 - alpha) * sigma/sqrt(n) # critical value
d <- crit + 0.01 #observed distance from H0
xbar <- mu0 + d #observed mean
t <- (xbar - mu0)/(sigma/sqrt(n)) #observed t-statistic
p <- 1 - pnorm(t) #p-value</pre>
```

Consider the test T of  $H_0: \mu \leq \mu_0$  versus  $H_1: \mu > \mu_0$  with  $\alpha = 0.025$ ,  $\mu_0 = 0$ , n = 30, assume  $\sigma = 2$  known.

The common rule is: Reject  $H_0$ , if  $\bar{X}>\bar{x}_{crit}=\mu_0+z_{1-\alpha}\cdot\sigma/\sqrt{n}=0.7157$  or, equivalently, if  $Z=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}>z_{1-\alpha}=1.96$ .

Assume now the observed data is  $\bar{x}=0.7257$ . That is, we **reject**  $H_0:\mu_0\leq 0$ . The one-sample z-test gives z=1.9874 and p=0.0234.

## Post-data Severity Evaluation

Deborah Mayo: https://en.wikipedia.org/wiki/Deborah\_Mayo

#### Definition

Assume a **claim**  $C: \mu > \mu_1$  and a **counter-claim**  $\neg C: \mu \leq \mu_1$ .

The Severity with which claim C passes test T with outcome x is defined as the probability that test T would have produced a result that accords less well with C than x does, if  $\neg C$  were true

shortly:

$$Sev(T, x, \mu > \mu_1) = Pr(X \le x \mid \mu \le \mu_1)$$

This probability should be high.

Or, equivalently, the probability that test T would have produced a result that accords better with C than x does, if  $\neg C$  were true,

$$1-\mathsf{Sev}(T,x,\mu>\mu_1)=\Pr(X>x\mid \mu\leq \mu_1)$$

should be small!

This is a form of a modus tollens argument with two premises and a conclusion:

- $If \neg C \to X < x.$
- ightharpoonup X > x.
- ightharpoonup Therefore, not  $\neg C$ .

#### Implementation

```
library(severity)
```

```
severity package:severity R Documentation

Mayo's _Post-data_ Severity Evaluation

Description:

Computes severity at various discrepancies (from the null hypothesis) for the hypothesis test H_{0}: mu = mu_{0} vs H_{1}: mu > mu_{0}, where mu_{0} is the hypothesized value. Also plots both the severity curve(s) and the power curve on a single plot.
```

```
sev <- severity(mu0 = mu0, xbar = xbar, sigma = sigma, n = n, alpha = alpha) abline(v = mu0, lty = 2) abline(v = xbar, lty = 4)
```



**Figure 1:** Severity and power curve for different claims after observing  $\bar{x}=$  0.726 with test  $\mu\leq0$ 

Consider our actual test T of the null hypothesis  $H_0: \mu \leq \mathbf{0}$ . We rejected  $H_0$  after observing  $\bar{x} = \mathbf{0.7257} > \bar{x}_{crit} = \mathbf{0.7157}$  with  $p = \mathbf{0.0234}$ . The blue line represents the severity for different claims  $\mu > \mu_1$  passing test T after observing  $\bar{x} = \mathbf{0.7257}$ . The red line is the power for different  $\mu$ , the probability of rejecting  $H_0$ , if  $\mu$  is true.

- the severity for the claim  $\mu > 0$ , the hypothesized null, is 0.9766.
- the severity for the claim  $\mu > 0.7257$ , the observed value, is 0.5.
- $\blacktriangleright$  the severity for claims such as  $\mu >$  1.5 is already very small, it is 0.017.
- ▶ If the observed value is around the critical value as in our case,  $Power(\mu) = 1 Severity(\mu)$ .

## Power vs. Severity

The alternative hypothesis  $H_1: \mu > \mu_0$  ( $\mu > 0$  in our example) is a *composite* hypothesis. Assume that *prior* to a study, sample size n was calculated *assuming* a discrepancy from the null of  $\mu = 1.5$ . With n = 30 and  $\sigma = 2$ , this would lead to a power of 0.9841.

Researchers then say that they want to *detect* (better would be to say "signal") an effect of  $\mu \ge 1.5$  with high power, that is, the probability of rejecting  $H_0: \mu \le 0$  should be 0.9841, **if**  $\mu = 1.5$  **holds**.

It is now very important to note that *a posteriori*, with the data at hand ( $\bar{x}=0.7257$ ), we only reject  $H_0: \mu \leq 0$  in favor of  $H_1: \mu > 0$ . The researcher has by no means "shown" that  $\mu > 1.5$  holds.

Such statements are frequent. To claim that  $\mu >$  1.5 after a significant test of  $H_0: \mu \leq 0$  has a very, very low severity.

The claim  $\mu >$  1.5 is not severely tested, the severity for such a claim is only 0.017. The specified *simple* alternative  $\mu =$  1.5 has **no role** a posteriori!

In science, theories and hypotheses that are not severely tested have – following Popper – a very low empirical content. We must say that – probably – in our field of research, a large number of theories and hypothesis are not severely tested. This is because our tests are often weak tests.

All analyses were performed using the R statistical software R version 4.3.3 (2024-02-29) [R C23].

#### References

[R C23] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2023. URL: https://www.R-project.org/.

#### Session Info

- R version 4.3.3 (2024-02-29), x86\_64-pc-linux-gnu
- ▶ Running under: Ubuntu 22.04.4 LTS
- Matrix products: default
- ▶ BLAS: /usr/lib/x86\_64-linux-gnu/blas/libblas.so.3.10.0
- LAPACK: /usr/lib/x86\_64-linux-gnu/lapack/liblapack.so.3.10.0
- ▶ Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: knitr 1.45, severity 2.0
- Loaded via a namespace (and not attached): compiler 4.3.3, evaluate 0.23, formatR 1.9, highr 0.10, tools 4.3.3, xfun 0.41