

Mayo's Post-data Severity Evaluation

Statistik Kolloquium

André Meichtry March 5, 2024

Data and statistical Test

```
mu0 <- 0 #H0
sigma <- 2 #known SD
n <- 30 #sample size
alpha <- 0.025 #siglevel
crit <- mu0 + qnorm(1 - alpha) * sigma/sqrt(n) # critical value
d <- crit + 0.01 #observed distance from H0
xbar <- mu0 + d #observed mean
t <- (xbar - mu0)/(sigma/sqrt(n)) #observed t-statistic
p <- 1 - pnorm(t) #p-value</pre>
```

Consider the test T of $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ with $\alpha = 0.025$, $\mu_0 = 0$, n = 30, assume $\sigma = 2$ known.

The common rule is: Reject H_0 , if $\bar{X}>\bar{x}_{crit}=\mu_0+z_{1-\alpha}\cdot\sigma/\sqrt{n}=0.7157$ or, equivalently, if $Z=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}>z_{1-\alpha}=1.96$.

Assume now the observed data is $\bar{x}=0.7257$. That is, we **reject** $H_0:\mu_0\leq 0$. The one-sample z-test gives z=1.9874 and p=0.0234.

Post-data Severity Evaluation

Deborah Mayo: https://en.wikipedia.org/wiki/Deborah_Mayo

Definition

Assume a **claim** $C: \mu > \mu_1$ and a **counter-claim** $\neg C: \mu \leq \mu_1$.

The Severity with which claim C passes test T with outcome x is defined as the probability that test T would have produced a result that accords less well with C than x does, if $\neg C$ were true

shortly:

$$Sev(T, x, \mu > \mu_1) = Pr(X \le x \mid \mu \le \mu_1)$$

This probability should be high.

Or, equivalently, the probability that test T would have produced a result that accords better with C than x does, if $\neg C$ were true,

$$1-\mathsf{Sev}(T,x,\mu>\mu_1)=\Pr(X>x\mid \mu\leq \mu_1)$$

should be small!

This is a form of a modus tollens argument with two premises and a conclusion:

- $If \neg C \to X < x.$
- ightharpoonup X > x.
- ightharpoonup Therefore, not $\neg C$.

Implementation

```
library(severity)
```

```
severity package:severity R Documentation

Mayo's _Post-data_ Severity Evaluation

Description:

Computes severity at various discrepancies (from the null hypothesis) for the hypothesis test H_{0}: mu = mu_{0} vs H_{1}: mu > mu_{0}, where mu_{0} is the hypothesized value. Also plots both the severity curve(s) and the power curve on a single plot.
```

```
sev <- severity(mu0 = mu0, xbar = xbar, sigma = sigma, n = n, alpha = alpha) abline(v = mu0, lty = 2) abline(v = xbar, lty = 4)
```

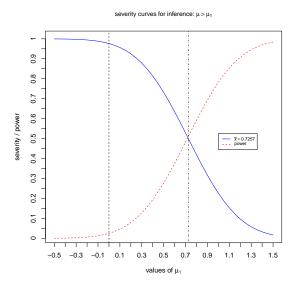


Figure 1: Severity and power curve for different claims after observing $\bar{x}=$ 0.726 with test $\mu\leq0$

Consider our actual test T of the null hypothesis $H_0: \mu \leq \mathbf{0}$. We rejected H_0 after observing $\bar{x} = \mathbf{0.7257} > \bar{x}_{crit} = \mathbf{0.7157}$ with $p = \mathbf{0.0234}$. The blue line represents the severity for different claims $\mu > \mu_1$ passing test T after observing $\bar{x} = \mathbf{0.7257}$. The red line is the power for different μ , the probability of rejecting H_0 , if μ is true.

- the severity for the claim $\mu > 0$, the hypothesized null, is 0.9766.
- the severity for the claim $\mu > 0.7257$, the observed value, is 0.5.
- \blacktriangleright the severity for claims such as $\mu >$ 1.5 is already very small, it is 0.017.
- ▶ If the observed value is around the critical value as in our case, $Power(\mu) = 1 Severity(\mu)$.

Power vs. Severity

The alternative hypothesis $H_1: \mu > \mu_0$ ($\mu > 0$ in our example) is a *composite* hypothesis. Assume that *prior* to a study, sample size n was calculated *assuming* a discrepancy from the null of $\mu = 1.5$. With n = 30 and $\sigma = 2$, this would lead to a power of 0.9841.

Researchers then say that they want to *detect* (better would be to say "signal") an effect of $\mu \ge 1.5$ with high power, that is, the probability of rejecting $H_0: \mu \le 0$ should be 0.9841, **if** $\mu = 1.5$ **holds**.

It is now very important to note that *a posteriori*, with the data at hand ($\bar{x}=0.7257$), we only reject $H_0: \mu \leq 0$ in favor of $H_1: \mu > 0$. The researcher has by no means "shown" that $\mu > 1.5$ holds.

Such statements are frequent. To claim that $\mu >$ 1.5 after a significant test of $H_0: \mu \leq 0$ has a very, very low severity.

The claim $\mu >$ 1.5 is not severely tested, the severity for such a claim is only 0.017. The specified *simple* alternative $\mu =$ 1.5 has **no role** a posteriori!

In science, theories and hypotheses that are not severely tested have – following Popper – a very low empirical content. We must say that – probably – in our field of research, a large number of theories and hypothesis are not severely tested. This is because our tests are often weak tests.

All analyses were performed using the R statistical software R version 4.3.3 (2024-02-29) [R C23].

References

[R C23] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2023. URL: https://www.R-project.org/.

Session Info

- R version 4.3.3 (2024-02-29), x86_64-pc-linux-gnu
- ▶ Running under: Ubuntu 22.04.4 LTS
- Matrix products: default
- ▶ BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
- LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
- ▶ Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: knitr 1.45, severity 2.0
- Loaded via a namespace (and not attached): compiler 4.3.3, evaluate 0.23, formatR 1.9, highr 0.10, tools 4.3.3, xfun 0.41