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Shrinkage of results can be seen
to be a necessary fact of life.

(Stephen Senn)

1 Introduction
Regression to the mean is a statistical phenomenon wherein extreme observations tend
to move closer to the mean upon subsequent measurements. This phenomenon was first
observed by Sir Francis Galton in the late 19th century (Galton 1889: Regression toward
mediocrity) and has since been studied extensively in statistics and related fields.

2 Mathematical Definition
Consider two random variables, X and Y , where X represents the initial measurement and Y
represents the subsequent measurement. Let µ be the mean of X, and σ2 be the variance of X.

According to the principle of regression to the mean, if X is extreme (far from µ) on its first
measurement, Y will tend to be closer to µ on its second measurement. Mathematically, the
conditional expectation of Y given X is expressed as:

E(Y |X) = µY + σX,Y

σ2
X︸ ︷︷ ︸
β

(X − µX), (1)

where µY is the mean of Y , σ2
X is the variance of X, and σX,Y = ρσXσY is the covariance

between X and Y , β is the regression coefficient. This can be written in a standardized form as

E(Y |X) − µY

σY
= ρ

X − µX

σX
. (2)

ZY |X = ρZX (3)

If ρ < 1, then (X, Y ) shows regression toward the mean (by this definition).
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3 Placebo versus Regression to the mean
Placebo effects can often be interpreted as a purely statistical – not a psychological – phe-
nomenon.

See R package for illustration: https://mcdr65.github.io/RegToMeanExample/

library(RegToMeanExample)

Assuming no true change.
We simulate correlated pre-post diastolic blood pressure data assuming no change from base-

line to follow-up: simulations from parameters: ρBL,F U = 0.76, µBL = µF U = 90, σBL = σF U =
8. Then let us look at the subgroup of “hypertensive at baseline” only. We have regression to the
mean, since βF U |BL = σF U,BL

σ2
BL

= r < 1.
Paired t-test for all and for extreme group:

DBP.RTM(n=200,show.plot = FALSE,show.out=TRUE)$ttestall

##
## Paired t-test
##
## data: X[, 1] and X[, 2]
## t = -3.6e-16, df = 199, p-value = 1
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.7728 0.7728
## sample estimates:
## mean difference
## -1.421e-16

DBP.RTM(n=200,show.plot = FALSE,show.out=TRUE)$ttestextrem

##
## Paired t-test
##
## data: X2[, 1] and X2[, 2]
## t = 3.2, df = 52, p-value = 0.002
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.9363 4.0209
## sample estimates:
## mean difference
## 2.479
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args(DBP.RTM)

## function (mu = 90, sigma = 8, r = 0.76, n = 1000, limit = 95,
## TrueChange = 0, show.plot = TRUE, show.out = FALSE)
## NULL

DBP.RTM(n=200)
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Figure 1: Simulation of diastolic blood pressure data. Simulations from parameters:
ρBL,F U = 0.76, µBL = µF U = 90, σBL = σF U = 8. Left panel: Baseline versus
Follow-up for diastolic blood pressure: no change in the mean. Right panel:
Baseline versus Follow-up for “hypertensive at baseline” only. We observe
an apparent change due to regression to the mean (Solid line: Regression
of follow-up on baseline-measure (that is, by fixing baseline)). Dashed lines:
mean values and equality lines.
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Extreme case: ρ=0

DBP.RTM(n=200,r=0)
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Including a true change of -10 and ρ=.8

DBP.RTM(n=200,r=0.8,TrueChange=-10)
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Including a true change of -10 and ρ=.4

DBP.RTM(n=200,r=.4,TrueChange=-10)
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ρ=1

DBP.RTM(n=200,r=1,TrueChange=0)
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4 True and observed
Assume true diastolic blood pressure, τ , at baseline is measured with error ε so that

X = τ + ε (4)

is the observed blood pressure.
Let the true mean difference between patients be ∆ and the observed mean difference

D, then the expectation of D is

E(D | ∆ = δ) = δ, (5)

However, the contrary is not true. We have for the expectation of ∆, given an observed
difference d,

|E(∆ | D = d)| < |d| , (6)

and we have regression to the mean1.

Reliability as upper bound The maximal possible correlation between ∆ and D is√
relD.

5 Myths
• Regression to the mean leads to diminished variance: Variance remains constant

since regression to the mean works in both directions. Extreme values on “post”-
measure have less-extreme values on “pre”-measure. Regression to the mean is not
a directed or temporal effect.

• Pre-Post changes are biased by Regression to the mean: This is only true for an
“extreme” subgroup.

• Regression to the mean is only induced by the reliability of the measure: For ex-
ample, body heights of mothers and daughters could be measured with perfect
reliability, but there is still regression to the mean, because there is still random
variation in the observed height.

1In a Bayesian approach, shrinking is natural and we have inverse unbiasedness. Most bayesians are
rather unconcerned about unbiasedness (in the formal sampling-theory sense) of their estimates. For
example, Gelman et al (1995) write: “From a Bayesian perspective, the principle of unbiasedness is
reasonable in the limit of large samples, but otherwise it is potentially misleading. Unbiasedness as
conventionally understood is not a necessary property of good inferences”. Assume without loss of
generality E(∆) = 0 and ∆̂ an unbiased estimate of a given effect ∆ and ∆̂shrunk a shrunk estimate.
Although ∆̂shrunk is not unbiased in the classic forward sense, E(∆̂shrunk | ∆ = δ) 6= δ it is unbiased
in the Bayesian backward sense: E(∆ | ∆̂shrunk = δ̂shrunk) = δ̂shrunk.
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Figure 2: Regression of observed on true (left) and of true on observed (right). Dashed
line: equality, Solid line: regression line.
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