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Quantity of interest

What is your quantity of interest θ?

a true1 slope in regression
a true log hazard ratio
a true within-subject change
a true between-group difference
a true sensitivity of a diagnostic test
a true reliability measure (ICC, Kappa)
a true risk ratio
a true log odds ratio
a true R2

etc. etc. etc

1“true”: unknown value in the population from which we have sampled.
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Power approach (Neyman-Pearson)

Sample size using power approach

You need both the null and alternative hypothesis.
You have a decision problem!
Assume a quantity of interest θ with possible values on the real line, i.e log
Odds Ratios (difference in logits)

−20 −10 0 10 20
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Power approach (Neyman-Pearson)

Sample size using power approach

Example: Non-inferiority study

−1.0 −0.5 0.0 0.5 1.0
πI − πC

Statistical Test Scenario: H0 Zone (red) vs H1 Zone (green)
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Power approach (Neyman-Pearson)

Sample size using power approach

With θ0 as the superiority or non-inferiority margin.
We have the following options for complementary H0 and H1:

clinical superiority : H0 : θ ≤ θ0 vs. H1 : θ > θ0, (θ0 > 0)
statistical superiority : H0 : θ ≤ 0 vs. H1 : θ > 0

non − inferiority : H0 : θ ≤ θ0 vs. H1 : θ > θ0, (θ0 < 0)
equivalence : H0 : |θ| ≥ θ0 vs. H1 : |θ| < θ0

equality : H0 : θ = 0 vs. H1 : θ 6= 0

θ0 is very often set to 0, unfortunately! → “nil-null hypothesis”
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Power approach (Neyman-Pearson)

Strawmen research

“There is a form of H0 testing that has been used in astronomy and
physics for centuries, what Meehl (1967) called the strong form, as ad-
vocated by Karl Popper (1959). Popper proposed that a scientific theory
be tested by attempts to falsify it. In null hypothesis testing terms, one
takes a central prediction of the theory, say, a point value of some crucial
variable, sets it up as the H0, and challenges the theory by attempting to
reject it. This is certainly a valid procedure, potentially even more useful
when used in confidence interval form. What I and my ilk decry is the
weak form in which theories are confirmed by rejecting null hypotheses.
([3], p.999).”

— Jacob Cohen
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Power approach (Neyman-Pearson)

Power function
Power is a function of the specified alternative θA

Power(θA) = Pr(reject H0 | θA). (1)
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Figure: Power function one-sided z-test, with H0 : θ ≤ 10 versus H1 : θ > 10. Left:
n = 20(—), 50(−−), 100(· · · ) und σ = 1. Right: n = 20 und
σ = 1(—), 0.5(−−), 0.25(· · · ).
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Power approach (Neyman-Pearson)

Which specific alternative?
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Power approach (Neyman-Pearson)

Which specific alternative?

To be able to compute sample size, you have to specify the alternative (to specify
a distance with respect to H0) (in order to control the type II error...)

Different Interpretations
I “minimal relevant difference”
I “worthwhile difference”
I “realistic difference, thought likely to occur”

These ideas tend to conflate the demands made (i.e. of the new treatment)
and the expectations of its benefit.
Combined role of “realistic and important”

Analysis stage
The specified alternative has no role a posteriori (in the analysis stage). You test
H0 against ¬H0, that’s all! The successful rejection of a null does not give any
support for a specific alternative, unless we have ruled out any other alternative
(which would be an infinite number, too).
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Power approach (Neyman-Pearson)

Simulation versus analytic approach
Power for t-test of H0 : µ ≤ 10 versus H1 : µ > 10 for specified alternative
µA = 10.5 with n = 20, σ = 1, α = 0.05:

Simulation:
R <- 10000 #number of simulations
n <- 20 #sample size
X <- matrix(0, n, R) #matrix for R sims with n data
alpha <- 0.05 #Type I error
sigma <- 1 #SD from pilot study
mu <- 10.5 #Truth under H1
mu0 <- 10 #H0
reject <- c()
for (i in 1:R) {

# simulate data from assumed truth (specified Alternative)
X[, i] <- rnorm(n = n, mean = 10.5, sd = 1)
# reject or not
reject[i] <- t.test(X[, i], mu = mu0, type = "one.sample", alternative = "greater")$p.value < alpha

}
proportions(table(reject))[2] #power

## TRUE
## 0.688

Analytical: Powerµ(α) = Φ
(

µ−µ0
σ/

√
n − z1−α

)
, implemented in

stats::power.t.test(n = 20, delta = 0.5, sd = sigma, sig.level = alpha, type = "one.sample", alternative = "one.sided")

##
## One-sample t test power calculation
##
## n = 20
## delta = 0.5
## sd = 1
## sig.level = 0.05
## power = 0.695
## alternative = one.sided
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Power approach (Neyman-Pearson)

Example complex problem*

Analytical Power for Stepped-Wedge-Design

swSS <- function(t = t0, m = m0, s = s0, theta = theta0, wpICC = wpICC0, CAC = CAC0, IAC = IAC0, beta = 0.2, alpha = 0.05, long = TRUE, power = NULL) {
# num<-2*(qnorm(1-alpha/2)+qnorm(1-beta))^2 Nparallel <- 2*(num/(theta/s)^2) ##Total N for parallel RCT
Nparallel <- ceiling(power.t.test(delta = theta, sd = s, power = power)$n) * 2
DFcluster <- function(m, wpICC) {

1 + (m - 1) * wpICC
}
Rlong <- (m * wpICC * CAC + (1 - wpICC) * IAC)/(1 + (m - 1) * wpICC)
Rcross <- (m * wpICC * CAC)/(1 + (m - 1) * wpICC)
if (long == TRUE) {

R <- Rlong
} else {

R <- Rcross
}
DFtime <- function(t, R) {

(3 * t * (1 - R) * (1 + t * R))/((t^2 - 1) * (2 + t * R))
}
k <- (Nparallel * DFcluster(m, wpICC) * DFtime(t, R))/m
if (long == TRUE) {

Nsw = k * m
} else {

Nsw = k * m * (t0 + 1)
}
res <- data.frame(Nparallel = Nparallel, k = k, Nsw = Nsw, IAC = IAC, CAC = CAC, wpICC = wpICC)
res

}
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Precision approach

Sample size with precision approach

There are many reasons for preferring to run estimation studies instead of
hypothesis testing studies.
Almost always more appropriated for our students.
A null hypothesis may be irrelevant, and when there is adequate precision one
can learn from a study regardless of the magnitude of a p-value.
A universal property of precision estimates is that, all other things being
equal, increasing the sample size by a factor of four improves the precision by
a factor of two.
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Precision approach

Sample size with precision approach

Do not need to guess the true population value.
Many studies are powered to detect a miracle and nothing less; if a miracle
doesnt happen, the study provides no information.
Planning on the basis of precision will allow the resulting study to be
interpreted if the p-value is large, because the confidence interval will not be
so wide as to include both clinically significant improvement and clinically
significant worsening.
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Precision approach

Example
Quantity of interest: µ1 − µ2. Question: n needed s.t. 95% confidence interval is
on average of the form

estimate ± δ.

n observations are i.i.d. normally distributed
σ from literature or pilot study
Two sided (1 − α)-confidence interval for µ1 − µ2:

(X̄1 − X̄2) ± z1−α/2 × σ
√

1/n1 + 1/n2

For α = 0.05, the condition is:

1.96 × σ
√

1/n1 + 1/n2 ≤ δ

Assume n1 = n2 and solve for n (per group):

n ≥ 2 × 1.962

(δ/σ)2 .
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Precision approach

Implementations
Quantity of interest: µ1 − µ2

σ = 4
Aim: estimate ± 2.

statpsych: https://search.r-project.org/CRAN/refmans/statpsych/html/00Index.html

statpsych::size.ci.mean2(alpha = 0.05, var = 16, w = 4, R = 1)

## n1 n2
## 32 32

presize: https://search.r-project.org/CRAN/refmans/presize/html/00Index.html

# n from precision
presize::prec_meandiff(delta = 3, sd1 = 4, sd2 = 4, r = 1, conf.width = 4, variance = "equal")

##
## sample size for mean difference with equal variance
##
## delta sd1 sd2 n1 n2 conf.width conf.level lwr upr
## 1 3 4 4 32 32 4 0.95 1 5

# precision from n
presize::prec_meandiff(delta = 3, sd1 = 4, sd2 = 4, r = 1, conf.width = NULL, n1 = 32, n2 = 32, variance = "equal")

##
## precision for mean difference with equal variance
##
## delta sd1 sd2 n1 n2 conf.width conf.level lwr upr
## 1 3 4 4 32 32 4 0.95 1 5
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Precision approach

Complex Survey Design*

Consider Design effects
Collects the inflation of variance due to complex sampling design

Sampling Designs
I Probability sampling
I Simple random sampling without replacement
I Simple random sampling with replacement
I Systematic sampling
I Cluster sampling
I Stratified random sampling

samplesize4survey:
https://search.r-project.org/CRAN/refmans/samplesize4surveys/
html/00Index.html
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