Principles in sample size estimation

Power versus precision

Statistik-Kolloquium, André Meichtry

Departement of Health Professions Bern University of Applied Sciences

March 5, 2025

Quantity of interest

2 Power approach (Neyman-Pearson)

3 Precision approach

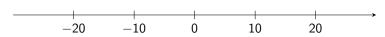
What is your quantity of interest θ ?

- a true¹ slope in regression
- a true log hazard ratio
- a true within-subject change
- a true between-group difference
- a true sensitivity of a diagnostic test
- a true reliability measure (ICC, Kappa)
- a true risk ratio
- a true log odds ratio
- a true R^2
- etc. etc. etc

^{1&}quot;true": unknown value in the population from which we have sampled.

Sample size using power approach

- You need both the null and alternative hypothesis.
- You have a decision problem!
- Assume a quantity of interest θ with possible values on the real line, i.e log Odds Ratios (difference in logits)



Sample size using power approach

• Example: Non-inferiority study

Sample size using power approach

- With θ_0 as the superiority or non-inferiority margin.
- We have the following options for complementary H_0 and H_1 :

```
clinical superiority: H_0: \theta < \theta_0
                                                                H_1: \theta > \theta_0
                                                                                      (\theta_0 > 0)
                                                      VS.
statistical superiority : H_0: \theta < 0
                                                      vs. H_1: \theta > 0
      non - inferiority : H_0 : \theta < \theta_0
                                                    VS.
                                                                H_1: \theta > \theta_0
                                                                                      (\theta_0 < 0)
            equivalence: H_0: |\theta| > \theta_0
                                                      VS.
                                                                H_1: |\theta| < \theta_0
                 equality: H_0: \theta = 0
                                                                H_1: \theta \neq 0
                                                      VS.
```

 θ_0 is very often set to 0, unfortunately! \rightarrow "nil-null hypothesis"

Strawmen research

"There is a form of H_0 testing that has been used in astronomy and physics for centuries, what Meehl (1967) called the strong form, as advocated by Karl Popper (1959). Popper proposed that a scientific theory be tested by attempts to falsify it. In null hypothesis testing terms, one takes a central prediction of the theory, say, a point value of some crucial variable, sets it up as the H_0 , and challenges the theory by attempting to reject it. This is certainly a valid procedure, potentially even more useful when used in confidence interval form. What I and my ilk decry is the weak form in which theories are confirmed by rejecting null hypotheses. ([3], p.999)."

— Jacob Cohen

Power function

Power is a function of the specified alternative θ_A

$$Power(\theta_A) = Pr(reject \ H_0 \mid \theta_A). \tag{1}$$

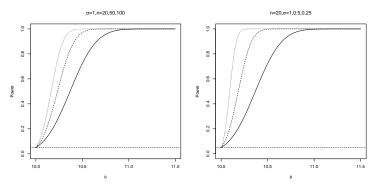
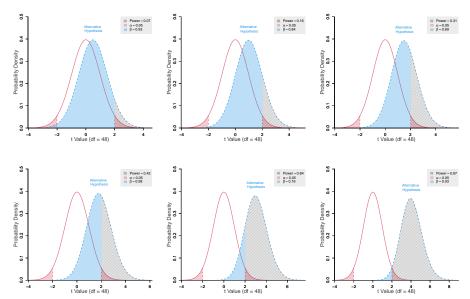


Figure: Power function one-sided z-test, with $H_0: \theta \le 10$ versus $H_1: \theta > 10$. Left: $n = 20(-), 50(--), 100(\cdots)$ und $\sigma = 1$. Right: n = 20 und $\sigma = 1(-), 0.5(--), 0.25(\cdots)$.

Which specific alternative?



Which specific alternative?

To be able to compute sample size, you have to specify the alternative (to specify a distance with respect to H_0) (in order to control the type II error...)

- Different Interpretations
 - "minimal relevant difference"
 - "worthwhile difference"
 - "realistic difference, thought likely to occur"

These ideas tend to conflate the demands made (i.e. of the new treatment) and the expectations of its benefit.

• Combined role of "realistic and important"

Analysis stage

The specified alternative has no role a posteriori (in the analysis stage). You test H_0 against $\neg H_0$, that's all! The successful rejection of a null does not give any support for a specific alternative, unless we have ruled out any other alternative (which would be an infinite number, too).

Simulation versus analytic approach

Power for *t*-test of H_0 : $\mu \le 10$ versus H_1 : $\mu > 10$ for specified alternative $\mu_A = 10.5$ with n = 20, $\sigma = 1$, $\alpha = 0.05$:

• Simulation:

```
R <- 10000 #number of simulations
n <- 20 #sample size
X <- matrix(0, n, R) #matrix for R sims with n data
alpha <- 0.05 #Type I error
sigma <- 1 #SD from pilot study
mu <- 10.5 #Truth under H1
mu0 <- 10 #H0
reject <- c()
for (i in 1:R) {
    # simulate data from assumed truth (specified Alternative)
    X[, i] \leftarrow rnorm(n = n, mean = 10.5, sd = 1)
    # reject or not
    reject[i] <- t.test(X[, i], mu = mu0, type = "one.sample", alternative = "greater")$p.value < alpha
proportions(table(reject))[2] #power
## TRUE
## 0 688
```

• Analytical: $Power_{\mu}(\alpha) = \Phi\left(\frac{\mu - \mu_0}{\sigma/\sqrt{n}} - z_{1-\alpha}\right)$, implemented in

```
stats::power.t.test(n = 20, delta = 0.5, sd = sigma, sig.level = alpha, type = "one.sample", alternative = "one.sided")
##
##
        One-sample t test power calculation
##
##
                 n = 20
##
             delta = 0.5
                sd = 1
##
##
         sig.level = 0.05
##
             power = 0.695
##
       alternative = one.sided
```

Example complex problem*

Analytical Power for Stepped-Wedge-Design

```
swSS <- function(t = t0, m = m0, s = s0, theta = theta0, wpICC = wpICCO, CAC = CACO, IAC = IACO, beta = 0.2, alpha = 0.05, long = TRU
    # num<-2*(qnorm(1-alpha/2)+qnorm(1-beta))^2 Nparallel <- 2*(num/(theta/s)^2) ##Total N for parallel RCT
   Nparallel <- ceiling(power.t.test(delta = theta, sd = s, power = power)$n) * 2
    DFcluster <- function(m, wpICC) {
       1 + (m - 1) * wpICC
   Rlong <- (m * wpICC * CAC + (1 - wpICC) * IAC)/(1 + (m - 1) * wpICC)
   Rcross <- (m * wpICC * CAC)/(1 + (m - 1) * wpICC)
    if (long == TRUE) {
        R <- Rlong
    } else {
        R <- Remoss
    DFtime <- function(t, R) {
        (3 * t * (1 - R) * (1 + t * R))/((t^2 - 1) * (2 + t * R))
   k <- (Nparallel * DFcluster(m, wpICC) * DFtime(t, R))/m
    if (long == TRUE) {
        Nsw = k * m
    } else {
        Nsw = k * m * (t0 + 1)
    res <- data.frame(Nparallel = Nparallel, k = k, Nsw = Nsw, IAC = IAC, CAC = CAC, wpICC = wpICC)
    res
```

Sample size with precision approach

- There are many reasons for preferring to run estimation studies instead of hypothesis testing studies.
- Almost always more appropriated for our students.
- A null hypothesis may be irrelevant, and when there is adequate precision one can learn from a study regardless of the magnitude of a *p*-value.
- A universal property of precision estimates is that, all other things being equal, increasing the sample size by a factor of four improves the precision by a factor of two.

Sample size with precision approach

- Do not need to guess the true population value.
- Many studies are powered to detect a miracle and nothing less; if a miracle doesnt happen, the study provides no information.
- Planning on the basis of precision will allow the resulting study to be interpreted if the p-value is large, because the confidence interval will not be so wide as to include both clinically significant improvement and clinically significant worsening.

Example

Quantity of interest: $\mu_1 - \mu_2$. Question: n needed s.t. 95% confidence interval is on average of the form

estimate $\pm \delta$.

- n observations are i.i.d. normally distributed
- \bullet σ from literature or pilot study
- Two sided (1α) -confidence interval for $\mu_1 \mu_2$:

$$(\bar{X}_1 - \bar{X}_2) \pm z_{1-\alpha/2} \times \sigma \sqrt{1/n_1 + 1/n_2}$$

• For $\alpha = 0.05$, the condition is:

$$1.96 \times \sigma \sqrt{1/n_1 + 1/n_2} \le \delta$$

• Assume $n_1 = n_2$ and solve for n (per group):

$$n \geq 2 \times \frac{1.96^2}{(\delta/\sigma)^2}.$$

Implementations

- Quantity of interest: $\mu_1 \mu_2$
- $\sigma = 4$
- Aim: estimate ± 2 .
- statpsych: https://search.r-project.org/CRAN/refmans/statpsych/html/00Index.html

```
statpsych::size.ci.mean2(alpha = 0.05, var = 16, w = 4, R = 1)
## n1 n2
## 32 32
```

presize: https://search.r-project.org/CRAN/refmans/presize/html/00Index.html

```
# n from precision
presize::prec_meandiff(delta = 3, sd1 = 4, sd2 = 4, r = 1, conf.width = 4, variance = "equal")
       sample size for mean difference with equal variance
##
##
    delta sd1 sd2 n1 n2 conf.width conf.level lwr upr
        3 4 4 32 32
                                         0.95 1 5
# precision from n
presize::prec_meandiff(delta = 3, sd1 = 4, sd2 = 4, r = 1, conf.width = NULL, n1 = 32, n2 = 32, variance = "equal")
##
##
       precision for mean difference with equal variance
##
    delta sd1 sd2 n1 n2 conf.width conf.level lwr upr
       3 4 4 32 32
```

Complex Survey Design*

- Consider Design effects
- Collects the inflation of variance due to complex sampling design
- Sampling Designs
 - Probability sampling
 - Simple random sampling without replacement
 - ► Simple random sampling with replacement
 - Systematic sampling
 - Cluster sampling
 - Stratified random sampling
- samplesize4survey:
- https://search.r-project.org/CRAN/refmans/samplesize4surveys/ html/00Index.html