Generalized Linear Model

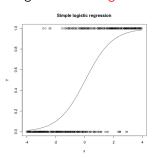
Kolloquium für Statistik

Departement of Health Professions Bern University of Applied Sciences

October 2, 2024

Generalized Linear Model (GLM)

- We want to generalize the linear model to discrete or continuous outcomes
- Dichotomous event outcome, leading to Logistic regression
- Counts as outcome, leading to Poisson regression



Andre Meichtry Generalized Linear Model October 2, 2024

Aspects of generalization

- Link function
- Variance function
- Other distributions

Link function

The most important aspect is the link-function.

• Systematic part: The expectation of the response,

$$\mu_i = \mathrm{E}(Y_i),$$

is transformed with a link function.

- The transformed expectation is called the linear predictor $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$.
- with the link function $h(\cdot)$, we have

$$h(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}. \tag{1}$$

Important link functions

- Linear regression: **Identity** function: $h(\mu_i) = \mu_i$
- Logistic regression: **logit** function: $h(\mu_i) = \text{logit } \mu_i$
- Poisson regression: **log** function: $h(\mu_i) = \log \mu_i$

Variance function

• Random part: The variance $Var(Y_i)$ is now a function of the expectation,

$$Var(Y_i) = \phi v(\mu_i), \tag{2}$$

6 / 40

where

- \triangleright $v(\cdot)$ is the variance function and
- $ightharpoonup \phi$ is the dispersion parameter, which has to be estimated or not.

Andre Meichtry Generalized Linear Model October 2, 2024

Important variance functions

- Linear regression: $v(\mu_i) = 1$ with $\phi = \sigma^2$
- Logistic regression: $v(\mu_i) = \mu_i(1 \mu_i)$ and $\phi = 1$
- Poisson regression: $v(\mu_i) = \mu_i$ and $\phi = 1$

Distributions

Each class of a GLM follows a model with density of the so-called exponential family. Special cases and most often used distributions of the exponential family are:

- The Normal distribution in Linear regression (What we have done so far)
- The Binomial distribution in Logistic regression
- The Poisson distribution in Poisson regression

Recap: Linear Model

Model:

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$
 (3)

• The expectation μ_i is

$$\mu_i = \mathrm{E}(Y_i) = \mathbf{x}_i^T \boldsymbol{\beta}. \tag{4}$$

- The link function $h(\cdot)$ is the identity and the variance function is $v(\mu_i) = 1$, the dispersion parameter is known, $\phi = \sigma^2$.
- Interpretation: β_j is the difference in expectations for two subpopulations that differ on x_i by on unit (slope).

Recap: Linear Model for Fertility

We have seen least squares estimation lm()

```
m.lm <- lm(Fertility ~ ., swiss)
m.lm0 <- lm(Fertility ~ 1, swiss) ## null model fit for later
summary(m.lm)
##
## Call:
## lm(formula = Fertility ~ ., data = swiss)
##
## Residuals:
      Min
               1Q Median
                                     Max
## -15.274 -5.262 0.503 4.120 15.321
##
## Coefficients:
##
                   Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept)
                 66.9152
                              10.7060
                                       6.25 0.00000019
## Agriculture
                  -0.1721 0.0703 -2.45
                                                  0.0187
## Examination
                  -0.2580
                               0.2539 -1.02
                                                  0.3155
## Education
                   -0.8709
                               0.1830
                                        -4.76 0.00002431
## Catholic
                     0.1041
                               0.0353
                                       2.95
                                                  0.0052
## Infant.Mortality 1.0770
                               0.3817
                                         2.82
                                                  0.0073
##
## Residual standard error: 7.17 on 41 degrees of freedom
## Multiple R-squared: 0.707, Adjusted R-squared: 0.671
## F-statistic: 19.8 on 5 and 41 DF, p-value: 5.59e-10
```

The same model as GLM

- Now estimated with maximum likelihood: glm()
- We have to fix the distribution, here family=gaussian
- Now switch between this slide and the former.

```
m.glm <- glm(Fertility ~ ., swiss, family = gaussian)
m.glm0 <- glm(Fertility ~ 1, swiss, family = gaussian) ## null model fit for later
summary(m.glm)
##
## Call:
## glm(formula = Fertility ~ ., family = gaussian, data = swiss)
## Coefficients:
                   Estimate Std. Error t value
                                                 Pr(>|t|)
## (Intercept)
                  66.9152
                               10 7060
                                          6.25 0.00000019
## Agriculture
                   -0.1721
                                0.0703 -2.45
                                                   0.0187
## Examination
                    -0.2580
                                0.2539
                                         -1.02
                                                   0.3155
## Education
                    -0.8709
                                0.1830
                                         -4.76 0.00002431
## Catholic
                     0.1041
                                0.0353
                                          2.95
                                                   0.0052
## Infant.Mortality 1.0770
                                0.3817
                                          2.82
                                                   0.0073
##
## (Dispersion parameter for gaussian family taken to be 51.3)
##
##
       Null deviance: 7178 on 46 degrees of freedom
## Residual deviance: 2105 on 41 degrees of freedom
## AIC: 326.1
##
## Number of Fisher Scoring iterations: 2
```

What is different between lm() and glm() output?

- "Deviance" versus Sum of Squares
- "Likelihood ratio tests" versus F-tests
- Least squares lm()

```
anova(m.lm0, m.lm)

## Analysis of Variance Table

## Model 1: Fertility - 1

## Model 2: Fertility - Agriculture + Examination + Education + Catholic +

## Infant.Mortality

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 46 7178

## 2 41 2105 5 5073 19.8 5.6e-10
```

Maximum likelihood, glm()

```
anova(m.glm0, m.glm, test = "LRT")

## Analysis of Deviance Table

## Model 1: Fertility - 1

## Model 2: Fertility - Agriculture + Examination + Education + Catholic +

## Infant.Mortality

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 46 7178

## 2 41 2105 5 5073 <2e-16
```

Estimation and Tests

- Estimation via Maximum Likelihood
- log-likelihood $l(\beta)$: (logarithmic) probability of the data as function of the parameter vector.
- The log-likelihood / is¹

$$I(\beta) = \sum_{i=1}^{n} \log \Pr(Y_i = y_i \mid \mathbf{x}_i, \beta)$$
 (5)

- The β that maximizes $I(\beta)$ is called the Maximum Likelihood Estimate (MLE) $\hat{\beta}$
- One can show that the MLE $\hat{\beta}$ has an asymptotic normal distribution.

Andre Meichtry

¹Remember that $\log \prod_{i=1}^n p_i = \sum_{i=1}^n \log p_i$.

Estimation and Tests

• Residual Deviance "replaces" the residual sum of squares and is defined as

$$D = 2(I_{max} - I(\hat{\beta})) \tag{6}$$

where

- I_{max} is the log-likelihood for the "maximal", the saturated model (one parameter for each observation i (the best possible fit))
- ▶ $I(\hat{\beta})$ is log-likelihood of the MLE.
- The factor 2 is necessary for D to have a χ^2 -distribution with n-p degrees of freedom.
- Null Deviance replaces the total sum of squares

$$D=2(I_{max}-I_0) (7)$$

where

▶ l₀ is the log-likelihood for the null model

Estimation and Tests: Likelihood-Ratio-Test

Assume two nested models Large and Small:

The difference in deviance

$$2(I_{Large} - I_{Small}) = 2\log \frac{L_{Large}}{L_{Small}}$$
 (8)

• can be shown to have an asymptotic chi-square distribution with the difference of the number of parameters as degrees of freedom,

$$2(I_{Large} - I_{Small}) \stackrel{approx}{\sim} \chi^2_{\rho_{Large} - \rho_{Small}}$$
 (9)

15 / 40

- H_0 : Model small with p_{Small} parameters is true.
- H_1 : Model large with $p_{Large} > p_{Small}$ parameters is true.
- $2(I_{Large} I_{Small}) \stackrel{approx}{\sim} \chi^2_{p_{Large} p_{Small}}$

This is the very important Likelihood-Ratio-Test.

Logistic regression

- Important and frequent model in Health Sciences.
- We have a dichotomous response variable Y_i :
 - Yes-No
 - healthy-diseased
 - etc.
- We want to model the probability of the event.
- The distribution of the Y_i is binomial with parameters π_i and n=1 (bernoulli),

$$Y_i \sim \text{Bin}\left(\mu_i = \pi_i, n = 1\right) \tag{10}$$

• Remember that $E(Y_i) = \pi_i$ and $Var(Y_i) = \pi_i(1 - \pi_i)$.

Logistic regression

The linear predictor is

$$\boxed{\mathsf{logit}(\pi_i) = \mathbf{x}_i^T \boldsymbol{\beta}},\tag{11}$$

- $h(\pi_i) = \operatorname{logit}(\pi_i) = \operatorname{log}(\pi_i/(1-\pi_i)) = \operatorname{log} \operatorname{odds}$
- The variance function $v(\pi_i) = \pi_i(1 \pi_i)$ and $\phi = 1$.
- The expected value is the inverse function (logistic function)

$$\pi_i = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i^T \boldsymbol{\beta})}$$
(12)

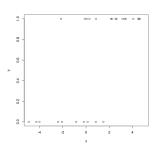
Logistic regression

- Interpretation of the parameters: β_j (except for the intercept) is the difference in logits (log odds ratio) for two subpopulations that differ on x_j by one unit.
- $\exp(\beta_j)$ (except for the intercept) is the odds ratio OR for the event for two subpopulations that differ on x_i by one unit.

Simulate some data:

Andre Meichtry Generalized Linear Model October 2, 2024

```
library(psych)
str(d.ToyLogReg)
## 'data.frame': 30 obs. of 2 variables:
   $ Y: int 0 0 0 0 NA 1 0 0 NA 0 ...
  $ x: num -4.91 -4.27 -4 -2.4 -2.23 ...
headTail(d.ToyLogReg)
## 1
       0 -4.91
## 2
        0 -4.27
## 3
        0 -4
        0 -2.4
## 4
## 27
        1 4.54
         1 4.62
      <NA> 4.71
## 30 <NA> 4.97
```



Specify argument family="binomial"

```
m.logreg <- glm(Y ~ x, family = "binomial", data = d.ToyLogReg)
summary (m.logreg)
##
## Call:
## glm(formula = Y ~ x, family = "binomial", data = d.ToyLogReg)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0831
                            0.5772
                                               0.89
## x
                0.8478
                            0.3306
                                      2.56
                                               0.01
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 34.646 on 25 degrees of freedom
## Residual deviance: 19.715 on 24 degrees of freedom
     (4 observations deleted due to missingness)
## AIC: 23.71
## Number of Fisher Scoring iterations: 5
```

The true values are 0 for the intercept and 1 for the slope.

Wald-tests and LRT-Tests

- Tests of individual coefficients based on approximative normality are called Wald-tests with a crude assumption about the shape of the likelihood.
- The LRT takes the likelihood values as they are.
- Therefore LR-tests are usually superior to Wald-tests
- They are asymptotically equivalent.
- confint() constructs likelihood confidence intervals if a glm-object is given as argument.

```
m.logreg0 <- glm(Y - 1, family = "binomial", data = d.ToyLogReg)
anova(m.logreg0, m.logreg, test = "LRT")

## Analysis of Deviance Table
## Model 1: Y - 1
## Model 2: Y - x
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 25 34.6
## 2 24 19.7 1 14.9 0.00011
```

```
Stat <- 2 * (logLik(m.logreg) - logLik(m.logreg0))
as.numeric(1 - pchisq(Stat, 1))
## [1] 0.000111
```

logits and odds ratios

confint() constructs "likelihood" confidence intervals

```
cbind(coef(m.logreg), confint(m.logreg))
## 2.5 %, 97.5 %,
## (Intercept) 0.0831 -1.12 1.23
## x 0.8478 0.34 1.72
```

Exponentiated coefficients: odds ratios, exp

```
cbind(exp(coef(m.logreg)), exp(confint(m.logreg)))
## 2.5 % 97.5 %
## (Intercept) 1.09 0.325 3.42
## x 2.33 1.405 5.58
```

• Alternative with emtrends(): Wald intervals.

check:

```
0.85 + c(-1, 1) * 1.96 * 0.33
## [1] 0.203 1.497
```

• Interpretation?

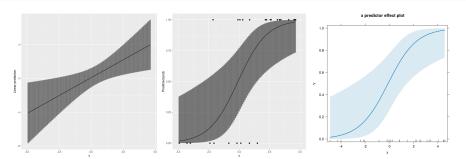
Predictions on logit and response scale

```
library(ggplot2)

emmip(m.logreg,-x,cov.reduce=function(x){seq(min(x),max(x),.1)},CIs=TRUE)

emmip(m.logreg,-x,cov.reduce=function(x){seq(min(x),max(x),.1)},type="response",CIs=TRUE)+geom_point(data=d.ToyLogReg,aes(x,as.numeri
library(effects) #alternative with effects package

plot(predictorEffects(m.logreg,"x"),axes=list(y=list(type="response"))) #alternative with effects package
```



Andre Meichtry Generalized Linear Model October 2, 2024

Numerical predictions on response scale

Andre Meichtry Generalized Linear Model October 2, 2024 26 / 40

Residual analysis

What residuals are is not unambiguous:

- Raw residuals (Response residuals) $R_i = Y_i \hat{\pi}_i$
- Working residuals (transformed on the space of the linear predictor)
- Deviance residuals².
- Pearson residuals (Raw residuals divided by the standard deviation)

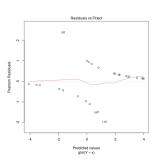
Andre Meichtry Generalized Linear Model October 2, 2024

 $^{^2}$ sign $(Y_i - \hat{\pi}_i) \cdot \sqrt{d_i}$ with d_i as the contribution i to the deviance, would be equal to the square root of a squared residual in normal distribution.

Residual analysis*

- Working residuals against linear predictor
- Response residuals against fitted values

plot(m.logreg, which = 1)



Example 2: HIV

```
d.hiv <- read.csv("https://raw.githubusercontent.com/mcdr65/StatsRsource/master/Data/HIV.csv")
str(d.hiv)
## 'data frame': 316 obs. of 11 variables:
## $ id
          : int 201 202 204 205 206 207 208 209 210 211 ...
## $ age3
              : int 1 1 2 1 3 1 1 2 2 1 ...
## $ gender : int 1 1 1 1 1 2 1 1 1 2 ...
## $ race3 : int 4 2 5 5 5 4 4 2 2 2 ...
## $ educ4
              : int 3 4 4 3 1 4 4 3 3 1 ...
## $ employment: int 0 0 1 1 0 0 0 0 0 0 ...
## $ disability: int 0 1 0 0 1 1 1 1 1 1 ...
## $ dep
              : int 0 0 1 0 1 1 1 1 0 1 ...
## $ anxpoms8 : int NA 0 1 1 1 0 1 1 0 1 ...
## $ paindic : int 1 1 1 0 1 1 0 1 0 1 ...
## $ aids
              : int 1000110100...
isafactor <- c(1:11)
d.hiv[, isafactor] <- lapply(d.hiv[, isafactor], as.factor)
levels(d.hiv$age3) <- c("<39", "40-49", ">50")
levels(d.hiv$gender) <- c("male", "female", "transgender")</pre>
levels(d.hiv$race3) <- c("black", "white", "mix")</pre>
levels(d.hiv$employment) <- c("no", "yes")</pre>
levels(d.hiv$disability) <- c("no", "yes")</pre>
levels(d.hiv$dep) <- c("no", "yes")</pre>
levels(d.hiv$paindic) <- c("no", "yes")</pre>
levels(d.hiv$aids) <- c("no", "yes")</pre>
```

Example 2: HIV

```
str(d.hiv)
## 'data.frame': 316 obs. of 11 variables:
## $ id
                : Factor w/ 316 levels "201", "202", "204", ...: 1 2 3 4 5 6 7 8 9 10 ...
## $ age3
                : Factor w/ 3 levels "<39", "40-49", ...: 1 1 2 1 3 1 1 2 2 1 ...
              : Factor w/ 3 levels "male", "female", ...: 1 1 1 1 1 2 1 1 1 2 ...
## $ gender
                : Factor w/ 3 levels "black", "white", ...: 2 1 3 3 3 2 2 1 1 1 ...
## $ race3
## $ educ4
               : Factor w/ 4 levels "1", "2", "3", "4": 3 4 4 3 1 4 4 3 3 1 ...
## $ employment: Factor w/ 2 levels "no", "yes": 1 1 2 2 1 1 1 1 1 1 ...
## $ disability: Factor w/ 2 levels "no", "yes": 1 2 1 1 2 2 2 2 2 2 ...
               : Factor w/ 2 levels "no", "yes": 1 1 2 1 2 2 2 2 1 2 ...
## $ dep
## $ anxpoms8 : Factor w/ 2 levels "0", "1": NA 1 2 2 2 1 2 2 1 2 ...
## $ paindic
              : Factor w/ 2 levels "no", "yes": 2 2 2 1 2 2 1 2 1 2 ...
## $ aids
               : Factor w/ 2 levels "no", "yes": 2 1 1 1 2 2 1 2 1 1 ...
```

Example 2: Logistic regression

In the summary, we see marginal Wald tests (based on approximative normality).

```
m.1 <- glm(aids ~ age3 * gender + race3, family = "binomial", data = d.hiv)
m.1b <- glm(aids ~ age3 * gender, family = "binomial", data = d.hiv)
m.1c <- glm(aids ~ age3 + gender, family = "binomial", data = d.hiv)
m.0 <- glm(aids ~ 1, family = "binomial", data = d.hiv)
summary(m.1b)
##
## Call:
## glm(formula = aids ~ age3 * gender, family = "binomial", data = d.hiv)
## Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                -0.164
                                            0.257 -0.64
                                                             0.523
## age340-49
                                 0.598
                                            0.336 1.78
                                                             0.075
## age3>50
                                 0.532
                                            0.359 1.48
                                                             0.138
## genderfemale
                                0.164
                                            0.562
                                                     0.29
                                                             0.770
## gendertransgender
                                0.387
                                            0.718
                                                     0.54
                                                             0.590
## age340-49:genderfemale
                                -0.598
                                            0.684 -0.87
                                                             0.382
## age3>50:genderfemale
                                -0.974
                                            0.749
                                                   -1.30
                                                             0.194
## age340-49:gendertransgender
                               -16.387
                                          594.164
                                                    -0.03
                                                             0.978
## age3>50:gendertransgender
                                -1.266
                                            1.055
                                                   -1.20
                                                             0.230
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 437.45 on 315 degrees of freedom
## Residual deviance: 421.35 on 307 degrees of freedom
## ATC: 439.3
## Number of Fisher Scoring iterations: 14
```

Example 2: Sequential LR tests

```
anova(m.1b, test = "LRT")
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: aids
##
## Terms added sequentially (first to last)
##
##
               Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                 315
                                             437
## age3
                      1.10
                                 313
                                             436
                                                   0.578
                     4.94
                                 311
                                                   0.084
## gender
## age3:gender 4
                                 307
                     10.06
                                             421
                                                   0.039
```

• One could proceed with different model comparisons.

Example 2: Marginal Tests

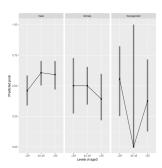
```
dropi(m.1b, test = "LRT")

## Single term deletions
##
## Model:
## aids - age3 * gender
## Df Deviance AIC LRT Pr(>Chi)
## <none> 421 439
## age3:gender 4 431 441 10.1 0.039
```

Predictions

Different effects can be visualized with emmeans::emmip, on the scale of the linear predictor or on the response scale.

emmip(m.1b, ~age3 | gender, type = "response", CIs = TRUE)



Andre Meichtry Generalized Linear Model October 2, 2024

Collapsibility of effect measures

- Given: Binary treatment indicator *X* and continuous *C* uncorrelated with *X*.
- Question: Does the effect of X change when we condition on non-confounding C?
- We know this is not the case for linear models.

Collapsibility in linear models

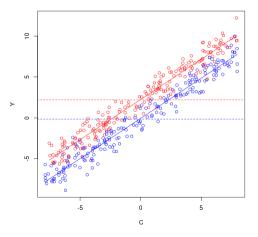


Figure: In linear models, marginal (dotted) and conditional group effects are equal in the absence of confounding.

Collapsibility in linear models

```
modlinM #marginal
## Call:
## lm(formula = Y ~ X)
## Coefficients:
## (Intercept)
                        XB
       -0.164
                     2.375
modlinC #conditional
## Call:
## lm(formula = Y ~ X + C)
## Coefficients:
## (Intercept)
                      XB
                                      C
                    2.3152
       -0.0631
                                 0.9850
```

Noncollapsibility of the odds ratio

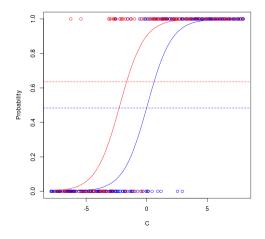


Figure: In logistic models, marginal (dotted) and conditional (on C) group effects differ even in the absence of confounding.

Noncollapsibility of the odds ratio

The marginal OR is always shifted toward the null compared to the conditional OR!

```
modM #marginal
##
## Call: glm(formula = Ydich ~ X, family = "binomial")
## Coefficients:
  (Intercept)
       -0.080
                     0.612
## Degrees of Freedom: 399 Total (i.e. Null): 398 Residual
## Null Deviance:
## Residual Deviance: 541 ATC: 545
modC #conditional
## Call: glm(formula = Ydich ~ X + C, family = "binomial")
## Coefficients:
## (Intercept)
      -0.0563
                    2.2816
                                 1.0072
## Degrees of Freedom: 399 Total (i.e. Null); 397 Residual
## Null Deviance:
## Residual Deviance: 152 AIC: 158
```

Exercise: Reproduce (approximately) the point estimates using the plot on the former slide!

Noncollapsibility of the odds ratio

- When the expected probability of outcome is modeled as a nonlinear function of the exposure, the marginal effect cannot be expressed as a weighted average of the conditional effects³.
- In the absence of confounding or when confounding is adjusted appropriately, both the marginal OR and conditional OR are valid measures.
- They are unbiased estimators for two different parameters.
- Report the marginal OR if the average effect at the population level is of interest.
- Report the conditional OR if the conditional effect at the individual or subgroup level is of interest.

³ Jensens inequality provides theoretical justification for this noncollapsibility in the absence of confounding, requiring that the marginal OR is always shifted toward the null compared to the conditional OR