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GLM

Generalized Linear Model (GLM)

We want to generalize the linear model to discrete or continuous outcomes
Dichotomous event outcome, leading to Logistic regression
Counts as outcome, leading to Poisson regression
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GLM

Aspects of generalization

1 Link function
2 Variance function
3 Other distributions
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GLM

Link function

The most important aspect is the link-function.
Systematic part: The expectation of the response,

µi = E(Yi),

is transformed with a link function.
The transformed expectation is called the linear predictor ηi = xT

i β.
with the link function h(·), we have

h(µi) = ηi = xT
i β. (1)
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GLM

Important link functions

Linear regression: Identity function: h(µi) = µi

Logistic regression: logit function: h(µi) = logit µi

Poisson regression: log function: h(µi) = log µi
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GLM

Variance function

Random part: The variance Var(Yi) is now a function of the expectation,

Var(Yi) = φv(µi), (2)

where
I v(·) is the variance function and
I φ is the dispersion parameter, which has to be estimated or not.
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GLM

Important variance functions

Linear regression: v(µi) = 1 with φ = σ2

Logistic regression: v(µi) = µi(1 − µi) and φ = 1
Poisson regression: v(µi) = µi and φ = 1
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GLM

Distributions

Each class of a GLM follows a model with density of the so-called exponential
family. Special cases and most often used distributions of the exponential family
are:

The Normal distribution in Linear regression (What we have done so far)
The Binomial distribution in Logistic regression
The Poisson distribution in Poisson regression
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Linear Model with lm() and glm()

Recap: Linear Model

Model:
Yi = xT

i β + εi , εi ∼ N (0, σ2) (3)

The expectation µi is
µi = E(Yi) = xT

i β. (4)

The link function h(·) is the identity and the variance function is v(µi) = 1,
the dispersion parameter is known, φ = σ2.
Interpretation: βj is the difference in expectations for two subpopulations
that differ on xj by on unit (slope).
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Linear Model with lm() and glm()

Recap: Linear Model for Fertility

We have seen least squares estimation lm()

m.lm <- lm(Fertility ~ ., swiss)
m.lm0 <- lm(Fertility ~ 1, swiss) ## null model fit for later
summary(m.lm)

##
## Call:
## lm(formula = Fertility ~ ., data = swiss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.274 -5.262 0.503 4.120 15.321
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66.9152 10.7060 6.25 0.00000019
## Agriculture -0.1721 0.0703 -2.45 0.0187
## Examination -0.2580 0.2539 -1.02 0.3155
## Education -0.8709 0.1830 -4.76 0.00002431
## Catholic 0.1041 0.0353 2.95 0.0052
## Infant.Mortality 1.0770 0.3817 2.82 0.0073
##
## Residual standard error: 7.17 on 41 degrees of freedom
## Multiple R-squared: 0.707, Adjusted R-squared: 0.671
## F-statistic: 19.8 on 5 and 41 DF, p-value: 5.59e-10
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Linear Model with lm() and glm()

The same model as GLM
Now estimated with maximum likelihood: glm()

We have to fix the distribution, here family=gaussian

Now switch between this slide and the former.

m.glm <- glm(Fertility ~ ., swiss, family = gaussian)
m.glm0 <- glm(Fertility ~ 1, swiss, family = gaussian) ## null model fit for later
summary(m.glm)

##
## Call:
## glm(formula = Fertility ~ ., family = gaussian, data = swiss)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66.9152 10.7060 6.25 0.00000019
## Agriculture -0.1721 0.0703 -2.45 0.0187
## Examination -0.2580 0.2539 -1.02 0.3155
## Education -0.8709 0.1830 -4.76 0.00002431
## Catholic 0.1041 0.0353 2.95 0.0052
## Infant.Mortality 1.0770 0.3817 2.82 0.0073
##
## (Dispersion parameter for gaussian family taken to be 51.3)
##
## Null deviance: 7178 on 46 degrees of freedom
## Residual deviance: 2105 on 41 degrees of freedom
## AIC: 326.1
##
## Number of Fisher Scoring iterations: 2
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Linear Model with lm() and glm()

What is different between lm() and glm() output?

“Deviance” versus Sum of Squares
“Likelihood ratio tests” versus F -tests
Least squares lm()
anova(m.lm0, m.lm)

## Analysis of Variance Table
##
## Model 1: Fertility ~ 1
## Model 2: Fertility ~ Agriculture + Examination + Education + Catholic +
## Infant.Mortality
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 46 7178
## 2 41 2105 5 5073 19.8 5.6e-10

Maximum likelihood, glm()
anova(m.glm0, m.glm, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: Fertility ~ 1
## Model 2: Fertility ~ Agriculture + Examination + Education + Catholic +
## Infant.Mortality
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 46 7178
## 2 41 2105 5 5073 <2e-16
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Estimation and Tests

Estimation and Tests

Estimation via Maximum Likelihood
log-likelihood l(β): (logarithmic) probability of the data as function of the
parameter vector.
The log-likelihood l is1

l(β) =
n∑

i=1
log Pr(Yi = yi | x i , β) (5)

The β that maximizes l(β) is called the Maximum Likelihood Estimate
(MLE) β̂

One can show that the MLE β̂ has an asymptotic normal distribution.

1Remember that log
∏n

i=1 pi =
∑n

i=1 log pi .
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Estimation and Tests

Estimation and Tests

Residual Deviance “replaces” the residual sum of squares and is defined as

D = 2(lmax − l(β̂)) (6)

where
I lmax is the log-likelihood for the “maximal”, the saturated model (one

parameter for each observation i (the best possible fit))
I l(β̂) is log-likelihood of the MLE.

The factor 2 is necessary for D to have a χ2-distribution with n − p degrees
of freedom.
Null Deviance replaces the total sum of squares

D = 2(lmax − l0) (7)

where
I l0 is the log-likelihood for the null model
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Estimation and Tests

Estimation and Tests: Likelihood-Ratio-Test

Assume two nested models Large and Small :
The difference in deviance

2(lLarge − lSmall) = 2 log LLarge
LSmall

(8)

can be shown to have an asymptotic chi-square distribution with the
difference of the number of parameters as degrees of freedom,

2(lLarge − lSmall)
approx∼ χ2

pLarge−pSmall
(9)

H0: Model small with pSmall parameters is true.
H1: Model large with pLarge > pSmall parameters is true.
2(lLarge − lSmall)

approx∼ χ2
pLarge−pSmall

This is the very important Likelihood-Ratio-Test.
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Logistic regression

Logistic regression

Important and frequent model in Health Sciences.
We have a dichotomous response variable Yi :

I Yes-No
I healthy-diseased
I etc.

We want to model the probability of the event.
The distribution of the Yi is binomial with parameters πi and n = 1
(bernoulli),

Yi ∼ Bin (µi = πi , n = 1) (10)

Remember that E(Yi) = πi and Var(Yi) = πi(1 − πi).
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Logistic regression

Logistic regression

The linear predictor is
logit(πi) = xT

i β , (11)

h(πi) = logit(πi) = log(πi/(1 − πi)) =log odds
The variance function v(πi) = πi(1 − πi) and φ = 1.
The expected value is the inverse function (logistic function)

πi = exp(xT
i β)

1 + exp(xT
i β)

(12)
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Logistic regression

Logistic regression

Interpretation of the parameters: βj (except for the intercept) is the difference
in logits (log odds ratio) for two subpopulations that differ on xj by one unit.
exp(βj) (except for the intercept) is the odds ratio OR for the event for two
subpopulations that differ on xj by one unit.
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Logistic regression

Example simple logistic regression

Simulate some data:

set.seed(4) #random seed
N<-30 #sample size
x<-sort(runif(N,-5,5)) #predictor
alpha<-0 #intercept
beta<-1 #slope
eta<-alpha+x*beta #linear predictor
prob<-exp(eta)/(1+exp(eta)) #logistic function is the inverse function of the logit function
Y<-rbinom(N,size=1,prob=prob) #N samples from binomial distribution with parameters pi and n=1
miss<-sample(1:N,size=4) #missing indicator (add some real-world missing data)
Y[miss]<-NA
d.ToyLogReg<-data.frame(Y,x)
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Logistic regression

Example simple logistic regression

library(psych)
str(d.ToyLogReg)

## ’data.frame’: 30 obs. of 2 variables:
## $ Y: int 0 0 0 0 NA 1 0 0 NA 0 ...
## $ x: num -4.91 -4.27 -4 -2.4 -2.23 ...

headTail(d.ToyLogReg)

## Y x
## 1 0 -4.91
## 2 0 -4.27
## 3 0 -4
## 4 0 -2.4
## ... ... ...
## 27 1 4.54
## 28 1 4.62
## 29 <NA> 4.71
## 30 <NA> 4.97

Andre Meichtry Generalized Linear Model October 2, 2024 20 / 40



Logistic regression

Example simple logistic regression
summary(d.ToyLogReg)

## Y x
## Min. :0.00 Min. :-4.91
## 1st Qu.:0.00 1st Qu.:-0.75
## Median :1.00 Median : 0.85
## Mean :0.62 Mean : 0.90
## 3rd Qu.:1.00 3rd Qu.: 3.26
## Max. :1.00 Max. : 4.97
## NA’s :4

plot(x, Y)
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Logistic regression

Example simple logistic regression

Specify argument family="binomial"

m.logreg <- glm(Y ~ x, family = "binomial", data = d.ToyLogReg)
summary(m.logreg)

##
## Call:
## glm(formula = Y ~ x, family = "binomial", data = d.ToyLogReg)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0831 0.5772 0.14 0.89
## x 0.8478 0.3306 2.56 0.01
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 34.646 on 25 degrees of freedom
## Residual deviance: 19.715 on 24 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 23.71
##
## Number of Fisher Scoring iterations: 5

The true values are 0 for the intercept and 1 for the slope.
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Logistic regression

Wald-tests and LRT-Tests
Tests of individual coefficients based on approximative normality are called
Wald-tests with a crude assumption about the shape of the likelihood.
The LRT takes the likelihood values as they are.
Therefore LR-tests are usually superior to Wald-tests
They are asymptotically equivalent.
confint() constructs likelihood confidence intervals if a glm-object is given
as argument.

m.logreg0 <- glm(Y ~ 1, family = "binomial", data = d.ToyLogReg)
anova(m.logreg0, m.logreg, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: Y ~ 1
## Model 2: Y ~ x
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 25 34.6
## 2 24 19.7 1 14.9 0.00011

Stat <- 2 * (logLik(m.logreg) - logLik(m.logreg0))
as.numeric(1 - pchisq(Stat, 1))

## [1] 0.000111
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Logistic regression

logits and odds ratios
confint() constructs “likelihood” confidence intervals
cbind(coef(m.logreg), confint(m.logreg))

## 2.5 % 97.5 %
## (Intercept) 0.0831 -1.12 1.23
## x 0.8478 0.34 1.72

Exponentiated coefficients: odds ratios, exp
cbind(exp(coef(m.logreg)), exp(confint(m.logreg)))

## 2.5 % 97.5 %
## (Intercept) 1.09 0.325 3.42
## x 2.33 1.405 5.58

Alternative with emtrends(): Wald intervals.
library(emmeans)
emtrends(m.logreg, ~1, var = "x", infer = c(TRUE, TRUE))

## 1 x.trend SE df asymp.LCL asymp.UCL z.ratio p.value
## overall 0.848 0.331 Inf 0.2 1.5 2.564 0.0103
##
## Confidence level used: 0.95

check:
0.85 + c(-1, 1) * 1.96 * 0.33

## [1] 0.203 1.497

Interpretation?
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Logistic regression

Predictions on logit and response scale

library(ggplot2)
emmip(m.logreg,~x,cov.reduce=function(x){seq(min(x),max(x),.1)},CIs=TRUE)
emmip(m.logreg,~x,cov.reduce=function(x){seq(min(x),max(x),.1)},type="response",CIs=TRUE)+geom_point(data=d.ToyLogReg,aes(x,as.numeric(Y)))
library(effects) #alternative with effects package
plot(predictorEffects(m.logreg,"x"),axes=list(y=list(type="response"))) #alternative with effects package
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Logistic regression

Numerical predictions on response scale

emmip(m.logreg,~x,type="response",cov.reduce=function(x){seq(min(x),max(x),by=2)},CIs=TRUE,plotit=FALSE)

## x yvar SE df LCL UCL tvar xvar
## -4.91 0.017 0.0299 Inf 0.000 0.379 1 -4.91
## -2.91 0.084 0.0941 Inf 0.008 0.501 1 -2.91
## -0.91 0.334 0.1565 Inf 0.112 0.666 1 -0.91
## 1.09 0.732 0.1206 Inf 0.450 0.901 1 1.09
## 3.09 0.937 0.0628 Inf 0.648 0.992 1 3.09
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
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Logistic regression

Residual analysis

What residuals are is not unambiguous:
Raw residuals (Response residuals) Ri = Yi − π̂i

Working residuals (transformed on the space of the linear predictor)
Deviance residuals2.
Pearson residuals (Raw residuals divided by the standard deviation)

2sign(Yi − π̂i ) ·
√

di with di as the contribution i to the deviance, would be equal to the
square root of a squared residual in normal distribution.
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Logistic regression

Residual analysis*

Working residuals against linear predictor
Response residuals against fitted values

plot(m.logreg, which = 1)
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Logistic regression

Example 2: HIV

d.hiv <- read.csv("https://raw.githubusercontent.com/mcdr65/StatsRsource/master/Data/HIV.csv")
str(d.hiv)

## ’data.frame’: 316 obs. of 11 variables:
## $ id : int 201 202 204 205 206 207 208 209 210 211 ...
## $ age3 : int 1 1 2 1 3 1 1 2 2 1 ...
## $ gender : int 1 1 1 1 1 2 1 1 1 2 ...
## $ race3 : int 4 2 5 5 5 4 4 2 2 2 ...
## $ educ4 : int 3 4 4 3 1 4 4 3 3 1 ...
## $ employment: int 0 0 1 1 0 0 0 0 0 0 ...
## $ disability: int 0 1 0 0 1 1 1 1 1 1 ...
## $ dep : int 0 0 1 0 1 1 1 1 0 1 ...
## $ anxpoms8 : int NA 0 1 1 1 0 1 1 0 1 ...
## $ paindic : int 1 1 1 0 1 1 0 1 0 1 ...
## $ aids : int 1 0 0 0 1 1 0 1 0 0 ...

isafactor <- c(1:11)
d.hiv[, isafactor] <- lapply(d.hiv[, isafactor], as.factor)
levels(d.hiv$age3) <- c("<39", "40-49", ">50")
levels(d.hiv$gender) <- c("male", "female", "transgender")
levels(d.hiv$race3) <- c("black", "white", "mix")
levels(d.hiv$employment) <- c("no", "yes")
levels(d.hiv$disability) <- c("no", "yes")
levels(d.hiv$dep) <- c("no", "yes")
levels(d.hiv$paindic) <- c("no", "yes")
levels(d.hiv$aids) <- c("no", "yes")
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Logistic regression

Example 2: HIV

str(d.hiv)

## ’data.frame’: 316 obs. of 11 variables:
## $ id : Factor w/ 316 levels "201","202","204",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ age3 : Factor w/ 3 levels "<39","40-49",..: 1 1 2 1 3 1 1 2 2 1 ...
## $ gender : Factor w/ 3 levels "male","female",..: 1 1 1 1 1 2 1 1 1 2 ...
## $ race3 : Factor w/ 3 levels "black","white",..: 2 1 3 3 3 2 2 1 1 1 ...
## $ educ4 : Factor w/ 4 levels "1","2","3","4": 3 4 4 3 1 4 4 3 3 1 ...
## $ employment: Factor w/ 2 levels "no","yes": 1 1 2 2 1 1 1 1 1 1 ...
## $ disability: Factor w/ 2 levels "no","yes": 1 2 1 1 2 2 2 2 2 2 ...
## $ dep : Factor w/ 2 levels "no","yes": 1 1 2 1 2 2 2 2 1 2 ...
## $ anxpoms8 : Factor w/ 2 levels "0","1": NA 1 2 2 2 1 2 2 1 2 ...
## $ paindic : Factor w/ 2 levels "no","yes": 2 2 2 1 2 2 1 2 1 2 ...
## $ aids : Factor w/ 2 levels "no","yes": 2 1 1 1 2 2 1 2 1 1 ...
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Logistic regression

Example 2: Logistic regression
In the summary, we see marginal Wald tests (based on approximative normality).

m.1 <- glm(aids ~ age3 * gender + race3, family = "binomial", data = d.hiv)
m.1b <- glm(aids ~ age3 * gender, family = "binomial", data = d.hiv)
m.1c <- glm(aids ~ age3 + gender, family = "binomial", data = d.hiv)
m.0 <- glm(aids ~ 1, family = "binomial", data = d.hiv)
summary(m.1b)

##
## Call:
## glm(formula = aids ~ age3 * gender, family = "binomial", data = d.hiv)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.164 0.257 -0.64 0.523
## age340-49 0.598 0.336 1.78 0.075
## age3>50 0.532 0.359 1.48 0.138
## genderfemale 0.164 0.562 0.29 0.770
## gendertransgender 0.387 0.718 0.54 0.590
## age340-49:genderfemale -0.598 0.684 -0.87 0.382
## age3>50:genderfemale -0.974 0.749 -1.30 0.194
## age340-49:gendertransgender -16.387 594.164 -0.03 0.978
## age3>50:gendertransgender -1.266 1.055 -1.20 0.230
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 437.45 on 315 degrees of freedom
## Residual deviance: 421.35 on 307 degrees of freedom
## AIC: 439.3
##
## Number of Fisher Scoring iterations: 14
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Logistic regression

Example 2: Sequential LR tests

anova(m.1b, test = "LRT")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: aids
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 315 437
## age3 2 1.10 313 436 0.578
## gender 2 4.94 311 431 0.084
## age3:gender 4 10.06 307 421 0.039

One could proceed with different model comparisons.
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Logistic regression

Example 2: Marginal Tests

drop1(m.1b, test = "LRT")

## Single term deletions
##
## Model:
## aids ~ age3 * gender
## Df Deviance AIC LRT Pr(>Chi)
## <none> 421 439
## age3:gender 4 431 441 10.1 0.039
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Logistic regression

Predictions

Different effects can be visualized with emmeans::emmip, on the scale of the
linear predictor or on the response scale.

emmip(m.1b, ~age3 | gender, type = "response", CIs = TRUE)
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Logistic regression

Collapsibility of effect measures

Given: Binary treatment indicator X and continuous C uncorrelated with X .
Question: Does the effect of X change when we condition on
non-confounding C?
We know this is not the case for linear models.
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Logistic regression

Collapsibility in linear models

Figure: In linear models, marginal (dotted) and conditional group effects are equal in the
absence of confounding.
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Logistic regression

Collapsibility in linear models

modlinM #marginal

##
## Call:
## lm(formula = Y ~ X)
##
## Coefficients:
## (Intercept) XB
## -0.164 2.375

modlinC #conditional

##
## Call:
## lm(formula = Y ~ X + C)
##
## Coefficients:
## (Intercept) XB C
## -0.0631 2.3152 0.9850

Andre Meichtry Generalized Linear Model October 2, 2024 37 / 40



Logistic regression

Noncollapsibility of the odds ratio

Figure: In logistic models, marginal (dotted) and conditional (on C) group effects differ
even in the absence of confounding.
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Logistic regression

Noncollapsibility of the odds ratio
The marginal OR is always shifted toward the null compared to the conditional
OR!
modM #marginal

##
## Call: glm(formula = Ydich ~ X, family = "binomial")
##
## Coefficients:
## (Intercept) XB
## -0.080 0.612
##
## Degrees of Freedom: 399 Total (i.e. Null); 398 Residual
## Null Deviance: 550
## Residual Deviance: 541 AIC: 545

modC #conditional

##
## Call: glm(formula = Ydich ~ X + C, family = "binomial")
##
## Coefficients:
## (Intercept) XB C
## -0.0563 2.2816 1.0072
##
## Degrees of Freedom: 399 Total (i.e. Null); 397 Residual
## Null Deviance: 550
## Residual Deviance: 152 AIC: 158

Exercise: Reproduce (approximately) the point estimates using the plot on the
former slide!
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Logistic regression

Noncollapsibility of the odds ratio

When the expected probability of outcome is modeled as a nonlinear function
of the exposure, the marginal effect cannot be expressed as a weighted
average of the conditional effects3.
In the absence of confounding or when confounding is adjusted appropriately,
both the marginal OR and conditional OR are valid measures.
They are unbiased estimators for two different parameters.
Report the marginal OR if the average effect at the population level is of
interest.
Report the conditional OR if the conditional effect at the individual or
subgroup level is of interest.

3Jensens inequality provides theoretical justification for this noncollapsibility in the absence of
confounding, requiring that the marginal OR is always shifted toward the null compared to the
conditional OR.
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