Fisher, Neyman and Bayes: Part II Philosophical excursion

André Meichtry

Departement of Health Professions Bern University of Applied Sciences

May 2, 2023

- The Bayesian Approach
 - History
 - Bayes' Rule
 - Examples
 - Moving from NHST to Bayes

Uncertainty

- Thinking about Uncertainty, Probability (17th century)
- Birth of probability as a mathematical discipline in 1654 (Pascal, Fermat)
- Gambling (calculus for long-run frequencies)
- Existence of God (calculus of beliefs)

Thomas Bayes, Pierre Simon Laplace

- Named after Reverend Thomas
 Bayes, an English part-time
 mathematician (1702-1761): "An
 essay in towards solving a problem in
 the doctrine of chances" (1763).
- With Thomas Bayes, Pierre Simon Laplace was the first to invert the probability statement and obtain probability statements about unknowns quantities, given observed quantities.
- Bayesian Statistics: Standard in the 18th/19th century
- 20th century: Classical/Frequentist Statistics (Fisher, NP)

Revival of Bayesian Statistics

- Foundations in the 1950s. Savage, Lindley and others...
- Bayesian statistics was percieved as
 - Foundationally/philosophically sound
 - ▶ But impractical due to computational limitations
- Modern Bayesian Statistics
 - Computational tools
 - Powerful simulation algorithms

Hume's problem of induction

- Can we learn about the future from the past?
- Can we learn from incomplete information?
- Conditional probability statements about unknown given known.
 - Unknown, not directly observable, parameters of a data-generating model.
 - Unknown and potentially observable, unobserved data, missing data, future data.
 - Known, observed data.

Parameters and data

Assume θ is some unknown quantity of interest, for example the true success rate of a new therapy.

Prior, data and posterior

- Let $p(\theta)$ denote the prior probability (density) distribution of θ , Your judgment about θ .
- Assume we have some evidence y, for example the results of a clinical trial, whose probability of occurrence depends on θ . This dependence is formalized by the likelihood $L(\theta) = p(y \mid \theta)$.
- We would like to obtain the posterior probability (density) distribution of θ , given the evidence, $p(\theta \mid y)$.

A theorem about probabilities

Theorem

Bayes' Theorem

$$p(\theta \mid y) = \frac{p(y \mid \theta) \times p(\theta)}{p(y)},$$

where p(y) is the total probability of the data.¹

- Follows directly from the axioms.²
- Is the basis for the whole apparatus of Bayesian statistics.
- How not fall in love with this, either from a philosophical or statistical perspective...

¹normalizing factor, to ensure that the posterior integrates to 1.

 $^{^2 \}text{probabilities}$ are numerical positive quantities, defined on a set of "outcomes" that are additive over mutually exclusive outcomes, and sum to 1 over all possible mutually exclusive outcomes.

Prior distribution

- The prior must be justified to a skeptical audience.
- Different priors can be used.
- Priors are explicitly and epistemologically relevant.
- Inappropriate to not use a prior (e.g. diagnostics, predictive values versus sensitivity/specificity).
- \bullet Often, if we have "no information", we use uninformative priors \to automatic Bayes.

Inference and Decisions

- We use the posterior distribution of the quantity of interest to answer questions with unambiguous probability statements.
- Standard posterior summaries: mean, median, mode, standard deviation, quantile (e.g, for 95% credibility intervals, the $Q_{0.025}$ and $Q_{0.975}$).

Example questions about θ , given data

Clinically relevant effect (δ) ? Pr(δ)? Effect in some range? Pr(δ) Pr(

$$\begin{array}{l} \mathsf{Pr}(\theta > \delta \mid Y) \\ \mathsf{Pr}(\delta_1 < \theta < \delta_2 \mid Y) \\ \mathsf{Pr}(\theta_2 - \theta_1 > \delta \mid Y) \\ \mathsf{Pr}(g(\theta) \mid Y) \end{array}$$

Table: Posterior distribution of θ has it all

Recap: Posterior distribution under different priors

$$x=1$$
 $x=2$ $x=3$ $x=4$

θ			Likelihood: $p(x \mid \theta)$			
	$egin{array}{c} heta_0 \ heta_1 \end{array}$.980 .098	.005 .001	.005 .001	.010 .900
Prior odds	θ	Prior prob: $p(\theta)$	Posterior: $p(\theta \mid x)$			
1:1	$egin{array}{c} heta_0 \ heta_1 \end{array}$	1/2 1/2	. <mark>91</mark> .09	. <mark>83</mark> .17	. <mark>83</mark> .17	.01 .99
1:5	$egin{array}{c} heta_0 \ heta_1 \end{array}$	1/6 5/6	.67 .33	.50 .50	.50 .50	.002 .998

Table: Posterior probabilities with different prior odds. Decision based on higher posterior probability. As example: $\Pr(\theta=\theta_0\mid X=1)$ with $\Pr(\theta_0)=\Pr(\theta_1)=0.5$ is $\frac{\Pr(X=1\mid\theta=\theta_0)\Pr(\theta_0)}{\Pr(X=1)}=\frac{\Pr(X=1\mid\theta=\theta_0)\Pr(\theta_0)}{\Pr(X=1\mid\theta=\theta_0)\Pr(\theta_0)\Pr(\theta_1)}=\frac{0.98\times0.5}{0.98\times0.5+0.098\times0.5}=0.91.$

NHST Strawman Test: t-test

3 8 122.5 28.16 120 122.5 14.83 70 170 100 -0.19

 $v1 \leftarrow c(-0.5, 0, 1.2, 1.2, 1.2, 1.9, 2.4, 3) * 100$

diff

-0.45 9.96

```
##
## Welch Two Sample t-test
##
## data: y1 and y2
## t = 2.19, df = 13.9, p-value = 0.046
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.2877 242.7123
## sample estimates:
## mean of x mean of y
## 130.0 7.5
```

Bayesian estimation with Markov Chain Monte Carlo (MCMC) with uninformative priors

```
library(BEST) ## 'Bayesian Estimation Supersedes the t Test'
mod <- BESTmcmc(y1, y2)
summary(mod, ROPEm = c(-20, 20))
                               mode HDI%
                                           HDIlo HDIup compVal %>compVal ROPElow ROPEhigh %InROPE
              mean median
## mu1
             130.39 130.565 128.000
                                           21.193 237.07
## m112
                     6.314
                             9.350
                                          -94.307 106.65
## muDiff
            124.03 124.488 125.369
                                     95 -25.175 269.40
                                                                      95.4
                                                                                               4.51
## sigma1
            139.94 128.384 113.126
                                           62.562 243.63
## sigma2
            129.87 119.617 104.779
                                           59.048 223.70
                                                                      56.1
## sigmaDiff 10.06
                     8.329
                             7.993
                                    95 -133.286 155.28
## nu
             34.46 25.621
                             10.374
                                           1.148 94.10
                                            0.585
## log10nu
              1.38
                     1.409
                             1.487
                                                   2.09
## effSz
              0.96
                     0.952
                             0.911
                                           -0.170
                                                   2.10
                                                                      95.4
```

Bayesian estimation with Markov Chain Monte Carlo (MCMC) with uninformative priors

```
plot(mod, compVal = 0, ROPE = c(-20, +20), showCurve = TRUE)
plot(mod, compVal = 0, ROPE = c(-20, +20), which = "effect", showCurve = TRUE)
```


Binomial data: estimation of a success rate

Figure: Prior (green), likelihood (blue) and posterior distributions (red) for success probability π for 6 successes and 4 failures, with different priors.

Moving from NHST to Bayesian estimation

An open letter from [Kru10]

- Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis. We should be leaders of the move, not followers.
- Modern Bayesian methods provide richer information, with greater flexibility and broader applicability than 20th century methods.
- Bayesian methods are intellectually coherent and intuitive.
- Null-hypothesis significance testing (NHST), with its reliance on *p* values, has many problems. There is little reason to persist with NHST now that Bayesian methods are accessible to everyone.

Moving from NHST to Bayesian estimation

- Give arguments to researchers, reviewers, colleagues, editors, etc. still wanting p-values.
- The less we use the word "significant", the better.
- If you test, do not attack the Strawman.
- If possible, estimate the quantity of interest.
- If possible, consider Bayesian estimation.

Perspective

At any rate – even if you are a Frequentist – try to view the world with Bayesian eyeglasses, as most people out there – probably – do.

Thank you

"There's no theorem like Bayes' theorem Like no theorem we know Everything about it is appealing Everything about it is a wow Let out all that a priori feeling You've been concealing right up to now!"

— George Box; Music: Irving Berlin

Software

All analyses were performed using the R statistical software R version $4.3.0\ (2023-04-21)\ [R\ C22].$ Session Info

- R version 4.3.0 (2023-04-21), x86_64-pc-linux-gnu
- Running under: Ubuntu 22.04.2 LTS
- Matrix products: default
- BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
- LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
- Base packages: base, datasets, graphics, grDevices, methods, stats, utils
- Other packages: BayesCourse 0.7, BEST 0.5.4, coda 0.19-4, HDInterval 0.2.2, knitr 1.37, LearnBayes 2.15.1, MASS 7.3-53.1, MCMCpack 1.5-0, psych 2.2.9, xtable 1.8-4
- Loaded via a namespace (and not attached): compiler 4.3.0, conquer 1.0.2, evaluate 0.20, formatR 1.9, grid 4.3.0, highr 0.9, lattice 0.20-44, magnitr 2.0.3, Matrix 1.3-2, Matrix Models 0.5-0, matrixStats 0.63.0, mcm 0.9-7, mnormt 2.1.1, nlme 3.1-152, parallel 4.3.0, quantreg 5.85, Rcpp 1.0.10, rjags 4-13, SparseM 1.81, stringi 1.7.8, stringr 1.4.0, tools 4.3.0, xfun 0.30

Bibliographie

- [Chr05] Ronald Christensen. Testing Fisher, Neyman, Pearson, and Bayes. The American Statistician, 59(2):121–126, 2005.
- [GCS⁺13] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. Bayesian Data Analysis, Third Edition (Chapman and Hall/CRC Texts in Statistical Science). Chapman and Hall/CRC, 3 edition, 11 2013.
 - [KM15] John K. Kruschke and Mike Meredith. BEST: Bayesian Estimation Supersedes the t-Test, 2015. R package version 0.3.0.
 - [Kru10] John Kruschke. An open letter. http://www.indiana.edu/~kruschke/AnOpenLetter.htm, 2010. Accessed: 2015-09-30.
 - [Kru14] John Kruschke. Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan. Academic Press, 2 edition, 11 2014.
 - [R C22] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022.
 - [SAM04] David J. Spiegelhalter, Keith R. Abrams, and Jonathan P. Myles. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley, 1 edition, 1 2004.
 - [ZM08] Stephen T. Ziliak and Deirdre N. McCloskey. The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives (Economics, Cognition, and Society). University of Michigan Press, 1st edition, 2 2008.