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Probability

A measure of uncertainty (very general)

A measure of long-run frequency (classical statistics)
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Axioms of probability

Events or propositions A and B:
1 Non-negativity: Pr(A) ≥ 0 for any event A
2 Certain event: Pr(certain event) = 1
3 Pr(A or B) = Pr(A) + Pr(B) for disjoint A and B

Very simple! All Bayesian statistics is based on these axioms.
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Subjective probability

We can think of probability as a measure of degree of belief.
This is not thought of as something measured by strength of feeling, but in
terms of betting behaviour.
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Subjective probability

For me to give 0.7 degree of belief to there being rain tomorrow is, roughly:
for me to regard 0.7 units as the fair price for a bet
that returns

I 1 unit if it rains tomorrow
I and nothing if it does not.
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Subjective probability

Ramsey, de Finetti, Savage, etc.
Measuring the evidence in favour of a proposition A
How much would You bet about the truth of A?
What odds O are You willing to give or receive for a fair bet?
Your probability

Pr(A) = O
1 + O
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Coherence and rational behavior*

Your odds O = 2 : 8, so probability=0.2.
You are willing to give 2, receive 8 (if A turns out to be true).
Expected gain: 0.2 · (+8) + 0.8 · (−2) = 0.

When the expected gain is zero, we have a fair bet, and this definition of
probability assumes rational behavior.
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Coherence and rational behavior*

Assume that an expert knows that the success probability of his therapy is
p = 0.6.

Scenario 1:
I He bets O = 9 : 1 overstating the effect.
I Expected gain: 0.6 · (+1) + 0.4 · (−9) = −1

Scenario 2:
I He bets O = 3 : 7 understating the effect.
I Expected gain: 0.6 · (+7) + 0.4 · (−3) = 3

Better for him to be coherent.
When the expected gain is zero, we have a fair bet, and this definition of
probability assumes rational behavior.
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Fisherian test of significance
Inductive evidence

Only one hypothesis, the “null”, H0, the hypothesis “to be nullified”
“Proof” by contradiction (not absolute). Inference. Model validation.
Fundamental quantity: A posteriori p-value quantifying the evidence against
the null from a single experiment.
p represents the probability of seeing something as weird or weirder than you
actually saw, if the null is true. No sampling interpretation.
α is secondary! and technically a decision rule.
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Example: Fisherian test of significance

Probability of data x under some parameter θ = θ0, that is, under the null model,
p(x | θ = θ0):

x 1 2 3 4

p(x | θ = θ0) .980 .005 .005 .010
p-value 1 .01 .01 .02

Table: Probability distribution of X under H0

An α = 0.01 Fisherian Test of H0 : θ = θ0 rejects for x = 2, 3, with p-value= 0.01 in
each case.

11 / 25



Neyman-Pearson hypothesis test
Inductive behavior

Additionally: alternative hypothesis HA and the concept of power.
Based on a priori fixed long run error rates, Type I and Type II. 1

The most powerful test at a specified α-level is the one maximizing the
likelihood (Neyman-Pearson Lemma2).
Roots in deductive philosophy and mathematics.
Decision problem.
(1 − α)-“confidence regions” as the long run probability of these regions
including the true parameter.

1α = Pr(reject H0 | H0) β = Pr(not reject H0 | HA)
2Fundamentallemma der mathematischen Statistik
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Neyman-Pearson hypothesis test

Probabilities p(x | θ) under H0 : θ = θ0 and HA : θ = θ1

x 1 2 3 4

p(x | θ = θ0) .980 .005 .005 .010
p(x | θ = θ1) .098 .001 .001 .900

Likelihood Ratio LR 3 .1 .2 .2 90

Table: Probability distribution of X under H0 and HA

The most powerful (or maximal likelihood ratio) α = 0.01 NP-test of
H0 : θ = θ0 vs. HA : θ = θ1 rejects for x = 4.
Result is different from the Fisher test!

3LR = L(θ1)
L(θ0) = p(x|θ1)

p(x|θ0)
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Neyman-Pearson hypothesis test

Probabilities p(x | θ) under H0 : θ = θ0 and HA : θ = θ1

x 1 2 3 4

p(x | θ = θ0) .980 .005 .005 .010
p(x | θ = θ1) .098 .001 .001 .900

Likelihood Ratio LR 4 .1 .2 .2 90

Table: Probability distribution of X under H0 and HA

The rejection region for the α = 0.02 NP-test of includes r = 2, 3, even
though 2 and 3 are five times more likely under the null hypothesis than
under the alternative.

4LR = L(θ1)
L(θ0) = p(x|θ1)

p(x|θ0)
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Neyman-Pearson hypothesis test

Probabilities p(x | θ) under H0 : θ = θ0 and HA2 : θ = θ2

x 1 2 3 4

p(x | θ = θ0) .980 .005 .005 .010
p(x | θ = θ2) .100 .200 .200 .500

Likelihood Ratio LR .1 40 40 50

Table: Probability distribution of X under H0 and HA2

NP testing cannot appeal to the idea of proof by contradiction!
The most powerful α = 0.01 NP test would reject for r = 4, even though
r = 4 is the most probable value for the data under the null hypothesis!
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First Bayesian intermezzo: From Prior to Posterior

x=1 x=2 x=3 x=4

θ Likelihood: p(x | θ)

θ0 .980 .005 .005 .010
θ1 .098 .001 .001 .900

Prior odds θ Prior prob: p(θ) Posterior: p(θ | x)

1:1 θ0 1/2 .91 .83 .83 .01
θ1 1/2 .09 .17 .17 .99

Table: Posterior probabilities with uninformative prior odds. Decision based on higher
posterior probability.
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Simple versus composite hypothesis*

Assume the parameter space Θ = {θ0, θ1, θ2}. We want to test H0 : θ = θ0 versus
HA : θ 6= θ0

x 1 2 3 4

p(x | θ = θ0) .980 .005 .005 .010

p(x | θ = θ1) .098 .001 .001 .900
p(x | θ = θ2) .100 .200 .200 .500

Table: Probability distribution of X under H0 and HA

Because the most powerful tests of the alternatives HA : θ = θ1 and HA : θ = θ2 are
identical (x = 4), this is the uniformly most powerful (UMP) α = 0.01-test.
Fisher: not forbidden to test individually different null models:
H0 : θ = θ0, H0 : θ = θ1, H0 : θ = θ2
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Beyond UMP*

UMP tests exist for one-parameter models from exponential family (i.e.
one-sided t-test)
UMP tests do not exist for two-sided tests and vector parameters.
The lack of availability of UMP tests has led to the search for tests under less
stringent requirements of optimality.

I Likelihood Methods:
F Locally most powerful tests, score test (most powerful for small deviations)
F Generalized Likelihood ratio test
F Wald-Test

I Many others...
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Null Hypothesis Significance Test Procedure (NHST)

A combined approach has emerged.
One follows Neyman-Pearson formally, but Fisher philosophically.
p-values are measures of evidence and long run error rates.
Planning of experiments: more Neyman-Pearson; analysis stage,
observational studies: more Fisherian.
The initial protagonists of the approaches would never have accepted today’s
practice...
The distinction between evidence (p-values) and error (α’s) were not
semantic sophistry for Fisher and NP!
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Null Hypothesis Significance Test Procedure (NHST)

(Apparent) separation of evidence from subjective factors.
Ease of computation, availability of software.
“Wide acceptability” and “established criteria” for “significance”.
(Apparent) relevance for regulatory agencies.
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What humans – by nature – ask for

Definition (p-value)
The p-value is the probability that any value of a statistic generated from the null
hypothesis according to the intended sampling process has magnitude greater than
or equal to the magnitude of the observed value of the statistic. a

aPr(T ≥ t | H0), for a test statistic T and observed statistic t.

That is a conditional probability of data, given an hypothesis.
Does not reply to the very question human minds by nature ask for, the
probability of H0, given observed data.
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Why attacking a straw-man?
Philosophy of Science, 1967, Vol. 34, 103�115.   #74  

 
Philosophy of Science 

 
June, 1967 

 
THEORY-TESTING IN PSYCHOLOGY AND PHYSICS: A 

METHODOLOGICAL PARADOX* 
 

PAUL E. MEEHL1 

Minnesota Center for Philosophy of Science 
 

Because physical theories typically predict numerical values, an improvement in ex-
perimental precision reduces the tolerance range and hence increases corroborability. In 
most psychological research, improved power of a statistical design leads to a prior 
probability approaching ½ of finding a significant difference in the theoretically predicted 
direction. Hence the corroboration yielded by �success� is very weak, and becomes weaker 
with increased precision. �Statistical significance� plays a logical role in psychology 
precisely the reverse of its role in physics. This problem is worsened by certain unhealthy 
tendencies prevalent among psychologists, such as a premium placed on experimental 
�cuteness� and a free reliance upon ad hoc explanations to avoid refuation. 

 
The purpose of the present paper is not so much to propound a doctrine or defend  
a thesis (especially as I should be surprised if either psychologists or statisticians were 
to disagree with whatever in the nature of a �thesis� it advances), but to call  
the attention of logicians and philosophers of science to a puzzling state of affairs in the 
currently accepted methodology of the behavior sciences which I, a psycholo- 
gist, have been unable to resolve to my satisfaction. The puzzle, sufficiently striking 
(when clearly discerned) to be entitled to the designation �paradox,� is the follow- 
ing: In the physical sciences, the usual result of an improvement in experimental 
design, instrumentation, or numerical mass of data, is to increase the difficulty of  
the �observational hurdle� which the physical theory of interest must successfully 
surmount; whereas, in psychology and some of the allied behavior sciences, the usual 
effect of such improvement in experimental precision is to provide an easier hurdle  
for the theory to surmount. Hence what we would normally think of as improve- 
ments in our experimental method tend (when predictions materialize) to yield

* Received March, 1967. 
1I wish to express my indebtedness to Dr. David T. Lykken, conversations with whom have 

played a major role in stimulating my thinking along these lines, and whose views and examples 
have no doubt influenced the form of the argument in this paper. For an application of these and 
allied considerations to a specific example of poor research in psychology, see [7]. 
 

Theories are expressed very weakly, confirmed by “any” magnitude of
increase.
“Statistical significance” plays a logical role in psychology precisely the
reverse of its role in physics.
Reason: Straw-man argument, nil-nulls such as H0 : ”Effect = 0”,
”Correlation = 0” etc.
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p-values do not depend only on data*

p-values depend on sampling intentions.
NHST has 100% false alarm rate in sequential testing. sampling to reach a
foregone conclusion (e.g., Anscombe, 1954).
p-values violate the so called likelihood principle: all information from the
data should be in the likelihood function. 5

p-values are inherently subjective!

5L(θ) = p(x | θ)
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Intermediate solution: confidence intervals
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one hundred  95% CI's for µ

A 95% CI on a parameter is the range of parameter values that would not be
rejected at α = 0.05 by the observed data.
They do not carry distributional information.
Nevertheless, people – almost invariably – interpret “confidence” as Bayesian
posterior probability.
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